Mathématiques du secondaire qualifiant

Fonction Logarithme (6)

Exercice 1 tp

Calculer


lim
+∞
1 - lnx
x

lim
+∞
x - ln(x²-1)
Correction

lim
+∞
1-lnx =
lim
+∞
1 - ln(x)
xx x

On a


lim
+∞
1 = 0
lim
+∞
ln(x) = 0
x x
Donc
lim
+∞
1-lnx = 0
x

lim
+∞
x - ln(x²-1) =
lim
+∞
x - ln(x²(1 - 1 )
=
lim
+∞
x - ln(x²) - ln(1 - 1 )
=
lim
+∞
x (1 - 2ln(x) ) - ln(1 - 1 )
x
On a
lim
+∞
ln(x) = 0
x
Et
lim
+∞
ln(1 - 1 ) = 0

Donc


lim
+∞
x-ln(x²-1) =
lim
+∞
x = +∞