Trigonométrie (1)
Exercice 1 tp
Calculer
cos | 7π | et | tan | 7π |
12 | 12 |
Correction
cos | 7π | = cos( | 3π | + | 4π | ) |
12 | 12 | 12 |
= cos | π | cos | π | - sin | π | sin | π |
4 | 3 | 4 | 3 |
= | √(2) | - | √(3) |
4 | 4 |
donc
cos | 7π | = | √(2)-√(3) |
12 | 4 |
tan | 7π | = tan( | 3π | + | 4π | ) |
12 | 12 | 12 |
= | tan | π | + tan | π |
4 | 3 | |||
1-tan | π | ×tan | π | |
4 | 3 |
ou encore
tan | 7π | = | 1+√(3) | = | (1+√(3))² |
12 | 1-√(3) | -2 |
Donc
tan | 7π | =-2-√(3) |
12 |
Exercice 2 tp
Calculer
cos | 5π | et | tan | 5π |
12 | 12 |
Exercice 3 tp
Soit x∈IR. Simplifier
A = sin( | π | -x)+sin( | π | +x) |
4 | 4 |
B = cos( | π | -x)+cos( | π | +x) |
4 | 4 |
Exercice 4 tp
Calculer
cos² | π | et sin² | π |
8 | 8 |
Correction
Notons que
{ | cos²(x) = | 1+cos(2x) |
2 | ||
sin²(x) = | 1-cos(2x) | |
2 |
cos²( | π | ) = | 1+cos(π/4) |
8 | 2 | ||
cos²( | π | ) = | 2+√(2) |
8 | 4 |
de la même façon on obtient
sin²( | π | ) = | 1-cos(π/4) |
8 | 2 | ||
sin²( | π | ) = | 2-√(2) |
8 | 4 |
Exercice 5 tp
Calculer
cos | 11π | tan | 11π | |
12 | 12 |
cos² | π | sin² | π | |
12 | 12 |