مبادئ في الحسابيات (1)
تمرين 1
                    1) تحقق اذا كان  317 عددا أوليا
                    2) حدد جميع قواسم العدد 140
                
تصحيح
					 خاصية (crible d'Eratosthène)
					ليكن n عددا صحيحا اكبر قطعا من 1 
					1) اذا كان n ليس اوليا فان القاسم او القواسم الاولية للعدد n تكون اصغر او تساوي 
					√n 
					2) اذا لم يوجد عدد اولي اصغر من او يساوي 
					√n لا يقسم n فان n عدد اولي
        		
					نطبق هذه الخاصية المهمة 
					(e1) نحسب √(317)=17,804..
					(e2) نحدد جميع الاعداد الاوليةالتي اصغر او تساوي 17 وهي 2 و 3 و 5 و 7 و 11 و 13 و 17
					(e3) نتحقق اذا كان احدها يقسم 317
					2∤317 ; 3∤317 ; 5∤317 ; 7∤317 ; 11∤317 ; 13∤317 ; 17∤317
					اذن 317 عدد اولي
        		
2) قواسم العدد 140 140=1.140=2.70=4.35=5.28=7.20=10.14 اذن قواسم العدد 140 هي
| 1 | 2 | 4 | 5 | 
| 7 | 10 | 14 | 20 | 
| 28 | 35 | 70 | 140 | 
تمرين 2
اختبر اذا كان n=241 اوليا?
تصحيح
					لدينا √241=15,52417..
					الاعداد الاولية ≤15 هي 2 ; 3 ; 5 ; 7 ; 11 و 13 
					2∤241 لان n فردي 
					3∤241 لان 3 لا يقسم مجموع ارقام n 
					5∤241 لان وحدة n  تخالف 0 و 5 
					7∤241 لان
                    241÷7=34,428.. 
				
					11∤241 لان
                    241÷11=21,9090..
					13∤241 لان
                    241÷13=18,53..
					اذن 241 عدد اولي
				
تمرين 3 tp
اختبر اذا كان n=117 اولي?
تصحيح
					لدينا √117=10,8.. ; الاعداد الاولية ≤10
					هي 2 ; 3 ; 5 و 7 
					2∤117 
 
					3|117 لان 3 يقسم مجموع ارقام 117 اذن 
					117 ليس اوليا
				
تمرين 4 tp
					اختبر اذا كانت الاعداد التالية
                    a=511 و b=773 و
                    c=2023
                    اولية ?
				
تمرين 5 tp
                    1) قم بتفكيك العددين a=1428 و b=2100 الى جداء عوامل اولية
                    2) حدد a∧b و a∨b 
                    3) تحقق ان a×b=(a∧b)×(a∨b).
                
تصحيح
1) تفكيك a و b
| 1428 | 2 | 2100 | 2 | |||||
| 714 | 2 | 1050 | 2 | |||||
| 357 | 3 | 525 | 3 | |||||
| 119 | 5 | 175 | 5 | |||||
| 17 | 17 | 35 | 5 | |||||
| 1 | 7 | 7 | ||||||
| 1 | ||||||||
					اذن a=2².3.7.17 و b=2².3.5².7
					2) لتحديد (a∧b) و (a∨b) 
					نطبق خاصية في الدرس 
					a∧b=2².3.7=84
					و a∨b=2².3.5².7.17=35700
					3) a . b = 1428.2100 = 2 998 800
					(a∧b)×(a∨b)=2 998 800
					اذن a×b= (a∧b)×(a∨b).