Mathématiques du secondaire qualifiant

الحساب المثلثي (1_11)

5.2 الخطوط المثلثية

5.2.1 خاصيات
x 0 π π π π
6 4 3 2
sinx 0 1 √2 √3 1
2 2 2
cosx 1 √3 √2 1 0
2 2 2
tanx 0 √3 1 √3 ×
3

5.3- العلاقات بين الخطوط المثلثية

5.3.1 خاصيات
cos(-x) = cosx sin(-x) = -sinx
sin(x+2kπ) = sinx cos(x+2kπ) = - cosx
tan(-x) = - tanx tan(x+kπ) = tanx
sin(π-x) = sinx cos(π-x)= - cosx
sin(π+x) = - sinx cos(π+x)= - cosx
tan(π-x) =- tanx tan(π+x)= tanx
sin( π - x) = cosx
2
cos( π - x) = sinx
2
sin( π + x) = cosx
2
cos( π + x) = - sinx
2
tan( π - x) = 1
2 tanx
tan( π + x)=- 1
2 tanx
تمرين 1 tp

بسط مايلي
A=cos(4π+x)+cos(3π-x).
B=sin(9π-x)+sin(x+8π).
C=tan(3π-x)+tan(4π+x).

تصحيح

A=cos(x+2.2π)+cos(π+2.1π-x).

A=cosx +cos(π-x)=cosx-cosx اذن A=0

B=sin(π+2.4π-x)+sin(x+2.4π).

B=sin(π-x)+sin(x)=sinx+sinx اذن B=2sinx.
C=tan(-x+3π)+tan(x+4π)
=tan(-x)+tan(x)=-tanx+tanx=0

اذن C=0.

تمرين 2 tp

أحسب

cos( ) ; sin( 13π )
4 3
tan( -83π ) ; tan( 2021π )
4 3